
RESEARCH ARTICLE

Modeling cannabinoids from a large-scale

sample of Cannabis sativa chemotypes

Daniela VergaraID
1*, Reggie Gaudino2, Thomas Blank2, Brian Keegan3*

1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States

of America, 2 Front Range Biosciences, Lafayette, CO, United States of America, 3 Department of

Information Science, University of Colorado Boulder, Boulder, Colorado, United States of America

* daniela.vergara@colorado.edu (DV); brian.keegan@colorado.edu (BK)

Abstract

The widespread legalization of Cannabis has opened the industry to using contemporary

analytical techniques for chemotype analysis. Chemotypic data has been collected on a

large variety of oil profiles inherent to the cultivars that are commercially available. The

unknown gene regulation and pharmacokinetics of dozens of cannabinoids offer opportuni-

ties of high interest in pharmacology research. Retailers in many medical and recreational

jurisdictions are typically required to report chemical concentrations of at least some canna-

binoids. Commercial cannabis laboratories have collected large chemotype datasets of

diverse Cannabis cultivars. In this work a data set of 17,600 cultivars tested by Steep Hill

Inc., is examined using machine learning techniques to interpolate missing chemotype

observations and cluster cultivars into groups based on chemotype similarity. The results

indicate cultivars cluster based on their chemotypes, and that some imputation methods

work better than others at grouping these cultivars based on chemotypic identity. Due to the

missing data and to the low signal to noise ratio for some less common cannabinoids, their

behavior could not be accurately predicted. These findings have implications for characteriz-

ing complex interactions in cannabinoid biosynthesis and improving phenotypical classifica-

tion of Cannabis cultivars.

Introduction

Dozens of countries worldwide have legalized Cannabis for medicinal and recreational use. As

of this writing, nine states and the District of Columbia legalized both the medical and recrea-

tional use of Cannabis, while 29 other states legalized its medical consumption. Cannabis legal-

ization has opened the doors to a new—and profitable—worldwide industry, with significant

potential for medical and agricultural research. Regulatory requirements have brought state-

of-the-art analytical instrumentation into labs to ensure a proper analysis of the plant which

contains hundreds of chemical moieties including cannabinoids.

Cannabis is an angiosperm (flowering) plant, which uniquely produces the cannabinoid

compounds that drive this growing market. Some of these cannabinoids can interact with the

human endocannabinoid system, and have demonstrated psychoactive effects and medicinal
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potential [1] for example as COX-2 inhibitors [2]. The plant produces these compounds in the

acidic form, and the acids are reduced into the neutral form, typically by heating. Two of the

most widely known cannabinoids, Δ-9-tetrahydrocannabinolic acid (THCA) and cannabidio-

lic acid (CBDA), are converted respectively to their neutral forms Δ-9 tetrahydrocannabinol

(THC) and cannabidiol (CBD) under heating. THC is well-known for its psychoactive effects

[1].

The biochemical pathway responsible for the production of these compounds is complex

and involves multiple genes [3]. The enzymes responsible for the production of CBDA and

THCA—CBDA and THCA synthases (CBDAS or THCAS), respectively—act on the same pre-

cursor molecule: Cannabigerolic acid (CBGA) [4], along with a third poorly studied synthase

Cannabichromenic acid synthase (CBCAS), the producer of Cannabichomenic acid (CBCA).

These three synthases are found at the final stage of the biochemical pathway. They are codi-

fied by genes which are similar in their genetic sequence [3] and are close in proximity to each

other [5–7]. These complex pathways complicate efforts to predict or design fundamental phe-

notypic characteristics like THCA production in a given strain.

Other minor cannabinoids include Cannabinol (CBN), Δ-9-tetrahydrocannabivarin car-

boxylic acid (THCVA), and Cannabidivarinic Acid (CBDVA). CBN is a product that accumu-

lates with the breakdown of THC [8–10]. Both THCVA and CBDVA are produced in very low

quantities by most Cannabis cultivars, and likely for this reason, they have not been studied

widely to date. Some studies suggest that both THCVA and CBDVA are produced by a variant

of the well-known cannabinoid pathway [11, 12] that yields to the production of homologous

compounds such as cannabigerovarinic acid (CBGVA) which is the precursor molecule used

by THCVA and CBDVA synthases [11, 12]. THCV the decarboxylated neutral of THCVA is

the only other cannabinoid that is known to produce psychoactive effects along with THC

[13], and CBDV may have possible medicinal properties as an anticonvulsant [14].

The number of species that compose this genus Cannabis is debated among scientists [15,

16]. The phenotypic and chemotypic characteristics of these different groupings—most fre-

quently labeled as “indica” and “sativa” are an important factor for the plant’s classification

and use. “Sativa” type plants are reputed to produce high THCA and low CBDA, are described

as having uplifting and stimulating psychoactive effects after consumption, and are utilized to

treat depression, low energy, headaches, nausea, and loss of appetite [17]. Plants labeled as

“Indica” are reputed to have relaxing and more sedative effects perhaps partly due to higher

levels of CBDA [17, 18]. Indica labeled plants are typically used to treat depression, anxiety,

insomnia, pain, inflammation, muscle spasms, epilepsy, and glaucoma [17]. The crosses

between “sativa” and “indica” plants are referred to as “hybrids” and have variable chemotypes

usually intermediate to the parents [18]. It follows that these distinctions are of critical impor-

tance for medical patients.

The taxonomic based naming convention from the Cannabis industry is flawed, varieties

and groupings are often mislabeled, and their attempt at nomenclature is inconsistent with

biological relatedness or therapeutic use[18–20]. This labeling problem was also previously

limited by the narrow representations of cannabis cultivars approved by the US government

for research in the past [21, 22].

This study examines a large sample of cultivars available in medical and recreational mar-

kets within the United States. We make two contributions: identifying latent clusters of culti-

vars based on similarities in their chemotypes and evaluating the accuracy of different

methods for imputing missing chemotype data. There are coherent and interpretable clusters

of cultivars reflecting product demand in the rapidly-changing market. However, no single

imputation method is able to reliably predict all missing chemotype data, but some imputation

methods do have very high accuracy for specific cannabinoids.
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Methods

Data collection

Cannabinoid concentration profiles (chemotypes) were generated by Steep Hill, Inc following

the companies published measurement protocol [20]. Briefly, data collection was performed

using high performance liquid chromatography (HPLC) with Agilent (1260 Infinity, Santa

Clara, CA) and Shimadzu (Prominence HPLC, Columbia, MD) equipment with 400–6000 mg

of sample. The data analysis included only data from Cannabis flowers.

We combined the acidic forms of the cannabinoids and their neutral forms using the same

conversion rate of 0.88 which was also used by Vergara et al. (2017). The combination of the

acidic and neutral forms provides a more honest analysis given that these flowers could have

been collected at different points in time and therefore their ratio of acidic to neutral forms of

the cannabinoids could differ. We analyzed seven cannabinoids, four which are part of the

same biochemical pathway [7]: CBG, CBD, THC, CBC and the breakdown product of THC,

Cannabinol (CBN). We also included for some of our analyses two other cannabinoids whose

biochemical pathways is still unknown: Tetrahydrocannabivarin (THCV) and Cannabidivarin

(CBDV).

Data distribution

The raw data provided by Steep Hill, Inc. consisted of 13 different files and is found in the

dryad repository (https://doi.org/10.5061/dryad.sxksn0314). These data were taken from a

combination of regulatory compliance testing, internal customer research and development,

and data collected as part of studies directed to chemical or genetic characterization over a

period of eight years. Therefore, these data represent a mixture of types that were combined

and subsequently filtered based on depth of information. We used custom Python scripts

using the pandas library to clean these raw files, which resulted in a single file with 17,600

entries, with samples from four different US states: 2 from Alaska; 16,418 from California; 936

from Colorado; and 244 from Washington. California was the only state that included samples

from eight years (2011–2018), and the only year that included three states (California, Colo-

rado, and Washington) was 2014.

Missing data and imputation

Few of these cultivars (N = 153) have information about all of the major cannabinoids summa-

rized in Table 1 with the features of the N = 17,600 unique cultivars in the data set. Given the

overwhelming prevalence of cases missing at least one observation of a cannabinoid (Table 1,

Table 1. Cannabinoid distribution for 17,612 unique cultivars.

Cannabinoid Count Missing Mean S.D. Max.

Cannabigerol (CBG) 12,270 30.28% 0.50% 0.47% 11.58%

Δ9-tetrahydrocannabinol (THC) 17,346 1.44% 14.03% 6.45% 33.95%

Cannabidiol (CBD) 10,948 37.80% 1.68% 3.91% 25.80%

Cannabichromene (CBC) 6,487 63.14% 0.120% 0.128% 1.79%

Cannabinol (CBN) 6,675 62.07% 0.067% 0.18% 2.95%

Tetrahydrocannabivarin (THCV) 3,311 81.19% 0.198% 0.412% 6.62%

Cannabidivarin (CBDV) 597 96.60% 0.069% 0.11% 0.83%

For each cannabinoid (column 1), we report the number of cases (column 2), the percentage missing (column 3), the average concentration (column 4), standard

deviation of concentrations (column 5), and maximum observed value (column 8).

https://doi.org/10.1371/journal.pone.0236878.t001
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S1 Fig in S1 File), dropping these cases from the analysis would greatly reduce statistical power

as well as introduce significant sampling biases. We follow statistical best practices about

reporting missing data by reporting on the completeness of the data, detail our approaches for

handling missing data, and explore the features of the missing data.

These data could be missing for a variety of reasons. Mechanisms of missingness include

“missing completely at random’’ (MCAR), “missing at random’’ (MAR), and “missing not at

random’’ (MNAR) [23]. Some clients may elect not to test for more cannabinoids than regula-

tions require (typically only THCA and THC) while others test for complete profiles for

research, product development, or marketing purposes. The complex regulation of cannabi-

noid synthesis [3] and the significant genetic diversity in Cannabis [3, 19, 20] complicate

efforts to model the relationships among cannabinoids. Methods like flux balance analysis

could be used to augment the data, however the required constraints, objective functions, and

metabolic pathways have not yet been well-characterized in Cannabis.
We instead employ imputation-based methods to estimate the missing data values. Imputa-

tion specifically refers to a class of methods for estimating missing values in a data set. The cen-

tral intuition behind imputation is that information like 1) other cannabinoids in the

observation, 2) the distribution of observed cannabinoids across samples, and 3) similarities to

other observations with complete data can guide estimation of the missing values. We employ

four distinct imputation methods—iterative, multiple, k-neighbors, and soft—to estimate the

missing values in our dataset using the “fancyimpute’’ package in Python (https://github.com/

iskandr/fancyimpute).The use of these imputation methods are theoretically defensible

because many of these cannabinoids are part of the same biochemical pathways and thus their

prevalence and concentration are strongly correlated rather than independent [4]. For exam-

ple, CBGA is the precursor molecule to which THCA, CBDA, and CBCA synthases act on [3,

4], so we expect that the abundance of THCA, CBDA, and CBCA could be used to estimate

the abundance of CBGA. We evaluate the performance of these imputation methods using sev-

eral approaches: examining the covariance among cannabinoids, the deviance of the imputed

distributions from the non-missing data, the performance of different classes of regression

models, and finally visualizing the overlap of the imputed values with existing clusters of data

using dimensionality reduction techniques.

Dimensionality reduction and clustering

Dimensionality reduction are methods for transforming high-dimensional data like our seven

cannabinoid observations per cultivar into a lower dimensional representation necessary for

visualization. Dimensionality reduction can be a powerful tool for classification, visualization,

and compression of high-dimensional data, but have traditionally been limited to linear tech-

niques such as principal components analysis (PCA) or factor analysis [24]. However, many

kinds of real-world data, like the cannabinoid chemotypes in the present study, have complex

and nonlinear relationships that require alternative dimensionality reduction techniques.

Investigations included the use of two recently-developed and non-linear dimensionality

reduction techniques, t-distributed stochastic neighbor embedding (t-SNE) [25] and uniform

manifold approximation and projection (UMAP) [26] to project the seven variables into two

dimensions for the purposes of visualization and clustering. Unlike PCA, the resulting X and

Y axes in t-SNE and UMAP do not have substantive statistical interpretations but their spatial

proximity and shapes of clusters captures similarity that can be more clearly viewed in human

visual pattern recognition of a low dimensional graph: closer points are more similar than

more distant points. These non-linear projections are transductive (making sense from the

observations themselves) rather than inductive (premises provide general rules), so
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withholding a subset of the data (e.g., the imputed values) will return a different projection

than using the full set. Dimensionality reduction techniques were applied to the data using the

scikit-learn and umap libraries in Python [26].

Statistical modeling. To evaluate the performance of the imputation methods, we treated

each cannabinoid as a dependent variable in a linear equation with the other cannabinoids as

explanatory variables. This allows us to compare several different regression methods to esti-

mate the fit of the model to the data. Regression models are drawn from the traditional ordi-

nary least square linear regression as well as more advanced k-neighbors and support vector

regression, which are designed for modeling non-linear relationships. Models are then fitted

using data from each of the four different imputation methods. The performance of each

model is evaluated using the coefficient of determination (R2), where values closer to 0 indicate

poor fit and values closer to 1 indicate perfect fit.

Results

Missing data and imputation

The data set contains missing data which is non-random, likely due to regulatory require-

ments, market demand, and client preferences. Regulatory requirements for chemotype testing

vary over time and across jurisdictions but almost always require testing for the psychoactive

cannabinoid THC and its acid form THCA. These testing requirements explain the low level

of missing information (1.4%) for THC in the data (S1 Table, S1 Fig in S1 File). The growing

popular interest in the therapeutic properties of (CBD) likewise explains its relatively low levels

(37.78%) of missing data in the acid and neutral forms of CBD. Conversely, cannabichromene

(CBC), cannabinol (CBN), tetrahydrocannabivarin (THCV), and cannabidivarin (CBDV) and

their acid forms, show much higher levels of missing data since clients elect not to test for

these poorly-understood and less-abundant cannabinoids.

To understand how the imputed values compared to the observed values, we plotted the

kernel density estimates (Fig 1) for six of the seven cannabinoids. We excluded THC because

of its few missing values. The graphs, particularly for the soft imputation in purple, becomes

noisier when more data is missing. Therefore, for CBG and CBD (Fig 1A and 1B) the curves

are much smoother given that these cannabinoids have only 30.27% and 37.78% of the data

missing respectively (S1 Table in S1 File). However, for CBN and THCV (Fig 1D and 1E) the

curves are jagged as they are missing 62% and 81.19% of the data respectively. The most

extreme case is CBDV that lacks 96.6% of the data (Fig 1F).

The results of t-tests of each cannabinoid’s observed distribution against each of its imputed

distributions as a measure of goodness-of-fit is summarized in Table 2. Well-fit imputed values

should have small test statistics and non-significant p-values while poorly-fit imputed values

will have larger test statistics and significant p -values. The imputation methods generally

struggled with the CBD, CBDV, and CBN values. At first glance this under-performance could

be attributed to a lack of baseline information: CBDV had missing observations in 96.6% of

the cases data and CBN was missing 60.3%. However, THCV (81.19%) and CBC (63.13%)

were also missing large fractions of their observations but the imputation methods returned

well-fit distributions. The iterative and k-nearest neighbor imputation method had signifi-

cantly different distributions for four of the seven cannabinoids while the soft imputation

method had well-fit distributions across all the cannabinoids.

To understand the relation of each of the seven cannabinoids against each other, we plotted

the distribution and the relations among the observed data (Fig 2). The performance of each

cannabinoid is portrayed by the kernel-density estimate of the (log-normalized) distribution

of concentrations on the diagonal (Fig 2), while the upper triangle is a scatter plot of the
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Fig 1. Density plots of original data and imputed values for each of the cannabinoids. The distribution of the observed values is in black, the iterative imputation in

blue, the multiple imputation in red, the k-nearest neighbors in green, and the soft imputation in purple.

https://doi.org/10.1371/journal.pone.0236878.g001

Table 2. Statistics for observed vs. imputed cannabinoid concentrations.

Cannabinoid Iterative Multiple K-Nearest Soft

Cannabigerol (CBG) -3.22 -0.736 1.14 -0.100

0.00129�� 0.462 0.256 0.920

Δ9-tetrahydrocannabinol (THC) 0.749 0.605 0.633 0.315

0.454 0.545 0.527 0.753

Cannabidiol (CBD) 4.45 5.77 3.51 1.76

<0.001��� <0.001��� <0.001��� 0.077

Cannabichromene (CBC) 1.426 0.310 0.763 0.184

0.154 0.757 0.445 0.854

Cannabinol (CBN) 5.62 2.98 -22.3 0.219

<0.001��� <0.003��� <0.001��� 0.826

Tetrahydrocannabivarin (THCV) 0.453 -0.265 -2.82 0.138

0.650 0.791 0.005�� 0.890

Cannabidivarin (CBDV) 16.8 7.61 7.84 0.168

<0.001��� <0.001��� <0.001��� 0.867

t-statistics (top) and p-values (bottom)

�p < 0.05

�� p < 0.01

��� p < 0.001.

https://doi.org/10.1371/journal.pone.0236878.t002
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relations between each of the seven cannabinoids against one another. The bottom triangle are

density plots of the bivariate data distributions, which show distinct clusters on the common

relation between each pair of cannabinoids.

Fig 2. Pair plot of the observed distributions of (log-scaled) cannabinoids. Diagonal are kernel density estimates. Lower triangle are density plots and the upper

triangle are scatter plots of the bivariate relationships.

https://doi.org/10.1371/journal.pone.0236878.g002
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The diagonal on Fig 2 shows that CBG is always around 0 given that it is found in very low

quantities. On the contrary, the THC curve has two humps, a lower one around zero and a

higher one in the positive side of the axis, showing that there are multiple individuals that have

higher percentages of this cannabinoid. Similarly, the CBD curve also has two humps but

much more conspicuous than the humps in the THC curve. The smoothness in the THC

curve suggests that the data is continuous, different to CBD which has two clearly distinct

groups. The bigger hump in CBD’s curve suggests that there are more individuals that have lit-

tle of the cannabinoid compared to the smaller hump with individuals that produce more

CBD. Even though CBC also shows two humps, both suggest that most individuals have very

little CBC. The humps for CBC, CBN, THCV, and CBDV have a maximum around zero estab-

lishing the lack of data for all of these cannabinoids.

The upper triangle on Fig 2 shows that CBG is found in very low concentrations compared

to THC, CBD, and CBC. THC is always found in the positive side of the axis indicating both

that the abundance of the data for this cannabinoid and that individuals produce it in larger

amounts. Finding low levels of CBG is expected given that CBGA is the precursor molecule to

which THCA, CBDA, and CBCA synthases act on to convert to THCA, CBDA, and CBCA

respectively. Therefore, if these synthases are active, there should be little CBGA. This is exactly

what our results show. Our results also show that the three cannabinoids can coexist, THC and

CBD can be present together, as well as CBC and THC and CBC and CBD. However, CBC is

always found in very low levels when compared to THC and CBD.

The density plots in the lower triangle (Fig 2) confirms that CBG is found in lower quanti-

ties compared to THC and CBD, and the lack of data for the rest of the cannabinoids. Yet the

relationship between CBG and CBD is interesting, with two distinct clusters. Both clusters are

centered around zero in the CBG (X) axis, showing the lack of this cannabinoid, but on the

CBD (Y) axis one of the clusters shows its presence. The second cluster which is the bigger one

(darker blue) suggests the lack of both CBD and CBG. The relationship between THC and

CBD is also interesting with three clusters suggesting that most individuals have high THC

and low CBD, but the other two clusters suggest the presence of (a) high-CBD individuals and

(b) individuals that produce little of either cannabinoid (e.g., low THC and low CBD possibly

hemp-type).

We plotted the two most well-known and biosynthetically related cannabinoids (THC and

CBD) to better visualize their relationship (Fig 3). Four distinctive clusters are apparent in this

visualization. Using the DBSCAN unsupervised clustering algorithm, we identified four sub-

stantive clusters of cultivars based on their distinctive combinations of CBD and THC concen-

trations (Fig 3). Cluster 0 (orange) contains high THC and low CBD cultivars, likely intended

for recreational consumption. Cluster 1 (blue) contains low THC and high CBD cultivars,

likely intended for medical consumption. Cluster 2 (pink) contains high THC and high CBD

cultivars, likely intended for recreational consumption. Cluster 3 (green) contains low THC

and low CBD cultivars, likely hemp intended for industrial use. The DBSCAN algorithm was

not able to assign the cultivars in Cluster -1 to another cluster, so these remain outliers, but

could theoretically be assigned to parent clusters through iteration, alternative clustering

parameterization, or other clustering methods.

All of the imputation methods preserved substantive relationships like the negative THC vs.

CBD correlation, and positive correlations for CBC vs. CBD, and CBN vs. CBC (Fig 4). The

iterative imputation method introduced stronger correlations than existed in the original data

between THC vs. CBDV, CBD vs. CBC, CBD vs. CBDV, and CBDV vs. CBC, (the red squares

in the center of Fig 4B). The other imputation methods preserved similar pairwise correlation

structures as were found in the original data. The imputation method that differs the most is

the iterative imputation method (Fig 4B), which exaggerates the relationships and displays
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stronger correlations (red squares in the middle) than the original association. The K nearest

neighbors (Fig 4D) is the one imputation method that weakens the relationships and the

squares that are in orange in the original distribution (Fig 4A) are found in green.

Notice that the relationship between THC and CBD (purple squares) in the original rela-

tionship (Fig 4A) is maintained in the other imputation methods (Fig 4B–4E) oscillating

between -0.5 and -0.6, suggesting a higher accuracy in predicting their behavior with any of

the imputation methods. Additionally, this shows that the relationship between both cannabi-

noids can be more easily predicted compared to any of the other cannabinoids. This is

expected, given their high potential concentrations and production from the same CBGA sub-

strate. When THCA is produced there is less CBGA to produce CBDA and vice versa.

In order to understand how well the imputed values for the missing THC and CBD obser-

vations correspond to the clusters in Fig 3, we plotted the original distribution of data (in

black) and the imputed values from each of the four imputation methods (Fig 5). The iterative

Fig 3. Scatter of THC against CBD concentrations colored by cluster. Four distinctive clusters are apparent in this

visualization distinguished by different colors: Cluster 0 in orange contains 8,270 cultivars and is characterized by high

concentrations of THC and low concentrations of CBD, most likely intended for recreational use. Clusters 1 in green contains

658 cultivars and is characterized by low concentrations of THC and high concentrations of CBD, most likely intended for

medical consumption. Cluster 2 in red contains 869 cultivars and is characterized by high concentrations of both THC and

CBD, most likely intended for both recreational and medical use. Cluster 3 in purple contains 536 cultivars and is characterized

by low concentrations of both THC and CBD, most likely hemp-type of cultivars. Finally, Cluster -1 in blue contains 433

cultivars that could not be assigned to other clusters using the DBSCAN algorithm, but were labeled using semi-supervised

approaches like label propagation.

https://doi.org/10.1371/journal.pone.0236878.g003
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(Fig 5A), multiple (Fig 5B), and soft (Fig 5D) imputation methods capture a quasi-linear rela-

tionship between CBD and THC (reflecting their competition for similar precursors). The K-

nearest neighbors’ method (Fig 5C) captures most of the patterns seen with the real data (Fig

3). All imputation methods capture clusters zero (high THC and low CBD), one (low THC

and high CBD), and two (high THC and high CBD) from Fig 3 which comprise most of the

data. However, all methods overlook the underlying clustered structure and miss the low-

THC, low-CBD cluster (likely hemp, cluster 3 in green Fig 3). The failure of all methods to pre-

dict this cluster may be due to the few hemp varieties found in the data. Finally, even though

K-nearest neighbor is the method that weakens the relationship between cannabinoids (Fig

4D) it is the one method that better overlays the original data for THC and CBD (Fig 5C).

Statistical modeling

The values reported in Table 3 are the average R2 from the five-fold cross validation for models

predicting each cannabinoid and using data from each imputation method and different

regression models. Given that model performance is evaluated using five-fold cross-validation

to train a regression model on a subset of 80% of the data and test its performance on a held-

out set of 20% of data. As a result, Table 3 reports 12 different scores for each cannabinoid:

Fig 4. Heatmap of the symmetric pairwise Pearson correlations. Correlations were performed across the original data and the data from the four imputation methods.

https://doi.org/10.1371/journal.pone.0236878.g004
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three kinds of regression models on four kinds of imputation methods. The goal of this analy-

sis is to identify if a particular combination of regression modeling and data imputation reli-

ably models multiple kinds of cannabinoid abundance as a function of other cannabinoids. No

Fig 5. Original vs. imputed values using four methods. The 191 imputed values from each of the four methods, compared to the raw distribution on Fig 3.

https://doi.org/10.1371/journal.pone.0236878.g005
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regression model or imputation method is consistently better at predicting the cannabinoid

concentration than others, but in some cases, particular cannabinoids can be very accurately

predicted as is the case for CBD in the support vector model under the iterative imputation

method (R2 = 0.815). Additionally, some cannabinoids are more accurately predicted than oth-

ers, which is the case of CBD or THC compared to CBC or CBDV.

Dimensionality reduction

We projected each of the four imputation methods using the UMAP technique (Fig 6). Focus-

ing on the four clusters, the UMAP projection clearly segregates high- and low-CBD and THC

cultivars. This is an important confirmation that clustering based on the THC and CBD scores

alone captured most of the substantive differences found using a non-linear and higher-

dimensional technique. Low-THC strains (red and green) and high-THC strains (blue and

purple) are likewise spatially proximate in three of the projections. Recall the DBSCAN cluster-

ing method used also failed to classify some observed points (blue in Fig 2, brown in Fig 6).

Judging by their proximity to the other clusters in these projects, the unclassified points largely

belong to the low-THC cultivars (red and green).

Cultivars whose CBD and or THC values were imputed are visualized in green (Fig 6). The

iterative method (Fig 6A) classified most of these missing values in the high THC, low CBD

(orange) cluster, but did identify a “new’’ grouping closer to the high THC, high CBD (blue)

cluster. The projection of the multiple method (Fig 6B) returned at least two distinctive clus-

ters with less overlap with the existing groupings. The projection of the k-nearest neighbors’

method (Fig 6C) unsurprisingly shows a significant overlap with existing values, again mostly

with the high-THC and low-CBD and the high-THC and high-CBD clusters. Finally, the val-

ues imputed from the soft imputation method (Fig 6D) have minimal overlap with any of the

existing clusters and suggests a fifth group somewhere between the high-THC and low-CBD

(orange) and the high-THC and high-CBD (blue) clusters.

Discussion

In this study, we evaluated seven cannabinoids from 17,611 Cannabis samples, representing an

unknown number of distinct varieties grown in four state-level markets within the United

States. Due to the laws and regulations from the different states, we found that many cannabi-

noids were not tested, and this missing data is not random (S1 Table in S1 File). Therefore, our

data consisted mostly of THC and CBD which are the widest-known cannabinoids. Even

Table 3. Average coefficients of determination (R2) from a 5-fold cross-validation for different regression models.

Cannabinoid K-Neighbors Linear Support Vector

I M K S I M K S I M K S

CBG 0.537 0.107 0.160 0.305 0.286 0.087 0.020 0.158 0.546 0.045 0.068 0.452

THC 0.634 0.304 0.353 0.597 0.403 0.403 0.323 0.357 0.526 0.443 0.408 0.688

THCV 0.309 0.155 0.068 0.628 0.091 0.029 0.041 0.062 0.011 0.012 0.008 0.065

CBC 0.395 0.169 0.047 0.236 0.459 0.321 0.053 0.150 0.367 0.241 0.077 0.361

CBD 0.811 0.515 0.515 0.747 0.528 0.454 0.385 0.403 0.815 0.562 0.542 0.627

CBDV 0.306 0.156 0.057 1.127 0.477 0.048 0.038 0.256 0.441 0.030 0.034 0.075

CBN 0.648 0.338 0.102 0.471 0.495 0.240 0.019 0.231 0.351 0.044 0.081 0.033

The three machine learning models -K-neighbors, linear, and support vector- predict the cannabinoid concentration using data from four different imputation

methods: iterative, multiple, k-neighbors, and soft. The best-performing models are bolded. (The R2 value for CBDV under K-Neighbors regression using soft

imputation values exceeds 1 because of the mean squared error.)

https://doi.org/10.1371/journal.pone.0236878.t003
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though our results met our expectations in clustering cultivars based on their chemotype, we

found that some imputation methods are more robust at inferring missing data values, and

due to the non-random absence of particular cannabinoids, their behavior could not be accu-

rately imputed. This challenge in the imputation of missing values is particularly difficult for

minor cannabinoids such as CBC, CBN, THCV, and CBDV. The results obtained are consis-

tent with the assertion that there is no best method to impute these cannabinoids, and that

subsets of the same dataset can behave differently with the same method (ie. Fig 4D, Fig 5C,

Table 3).

The study reaffirms the misnaming of Cannabis varieties by the industry [18, 19], since

strain identity cannot be predicted according to the clustering groups, even though the clusters

are reflective of the chemotype (Fig 3 and S3 Fig in S1 File). The UMAP projection method

Fig 6. Visualization of imputed data by reducing data with uniform manifold approximation and projection (UMAP).

https://doi.org/10.1371/journal.pone.0236878.g006
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(Fig 6) segregates high- and low-CBD and THC cultivars, confirming that clustering based on

these two cannabinoids captures most of the differences between varieties. Our results also

agree with those who have shown that strain name is not indicative of potency or overall chem-

ical composition [27]. Due to the naming issue, the clustering did not lead to visual separation

of similar chemotypes to common groups. This misnomer issue in the Cannabis industry is

further magnified by the fact that scientist must study the Cannabis produced by the federal

government studies despite its inferiority in potency and diversity, and the fact that it does not

reflect the products from the state medicinal and recreational markets [21, 22]. This is particu-

larly problematic for medical patients who do not understand what they are consuming.

In order to improve the understanding of the Cannabis consumed for medical patients,

chemotype testing must be made mandatory. However, testing facilities do not have standard-

ized measurement protocols, cannabinoid analysis methods vary widely across laboratories

[28], there are no institutional oversight to validate testing entities or their methodologies. In

our study for example, it was hard to discern whether the presence of 0 (zero) for a given can-

nabinoid was non-detected or not-analyzed, which are two distinct assessments that should be

evaluated differently. Given the lack of standardized laboratory methodologies and the lack of

supervision of these testing facilities, differences in cannabinoid reporting is expected. How-

ever, despite these weaknesses and lack of standardization, some testing facilities do under-

stand the importance and value of accurate chemotyping and see these chemotype tests as

more than a service. Thanks to these type of facilities, important cannabinoid and terpenoid

research has been achieved [21, 27, 29, 30].

The dimensionality reduction visualizations in Fig 6 cannot be compared with each other

since they may be randomly transposed and the imputed values “displace” rather than “over-

lay” the original data. In spite of these limitations, a “good” projection will separate qualita-

tively distinct data into separate clusters while spatially preserving their latent similarity.

Therefore, despite the different tradeoffs from all of our imputation methods, K-nearest (Fig

5C) displayed the best overlap with the original data. However, the coefficients of determina-

tion from the regression models (Table 3) did not show this particular method as the most

accurate. Linear dimensionality reduction algorithms like PCA (did not perform as well as the

non-linear methods like UMAP (Fig 6) and t-SNE. Finally, some cannabinoids are more accu-

rately predicted than others, but no single imputation method or regression model provided

consistent performance (Table 3, Fig 4). This could be due to the high amount of missing data

(Table 1, S1 Fig in S1 File) but also suggests the need for incorporating theoretically-informed

methods like flux balance analysis.

Because THC and CBD have attracted the most research and popular attention of all the

cannabinoids and their synthases both compete for the same precursor CBGA, the connection

between these compounds should reveal significant patterns. Our results show that despite the

competition for the same precursor, all of these compounds can be present together. Our

imputation results preserved associations such as the negative THC vs. CBD correlation, and

positive correlations for CBC vs. CBD, and CBN vs. CBC (Fig 6). In fact, THC has a negative

correlation with all other cannabinoids, and CBD and CBC always show a positive correlation

(Fig 4). Additionally, CBC is always found in very low levels when compared to THC and

CBD (Fig 2 upper half), which could indicate that CBCA synthase is not as good of a competi-

tor for CBGA. The points near each of the axes where the percentage of that given cannabinoid

is close to zero (Fig 2, upper half) suggest that those individual cultivars may either bear a

synthase gene that is a bad competitor, or a truncated version of the enzyme [31]. These three

enzymes could be classified as “sloppy enzymes” or “promiscuous” [32–34] particularly

because in vitro they produce up to eight different compounds including each other’s cannabi-

noids [35, 36]. Therefore, a third hypothesis could be that CBCA synthase is extremely sloppy
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and produces more of the other cannabinoids, which would explain the larger amounts THC

and CBD than CBC.

Some studies suggest that THC has been selected for and that varieties have been bred to

increase in THC potency [37, 38]. Even though our results do not show this trend, the average

THC from our results is much higher than that reported by others [37, 38]. THC production is

probably a result of gene sequence variation [31], expression levels, and gene copy number var-

iation [3], and there are multiple genes throughout the genome associated with its production

[7, 39]. However, the expression of these genes could be due to environmental effects, and

research suggests that the amount of THC is most likely due to cultivation conditions [27],

which have not yet been measured. Additionally, the trends showing an increase on THC

through time uses 20 years of data [37, 38], while we are only looking at eight years. This small

snapshot of time probably underestimates the whole pattern of increase on THC, which sug-

gests that breeders and growers have actively selected for this compound.

This work comes with limitations. First, we used the chemotypes from one company (Steep

Hill) which may introduce endogenous biases due to the composition of clients and presence

in markets with different regulations, and there are within and between lab differences in can-

nabinoid testing [28]. An argument can be made that the use of several labs will combine lab

biases and their associated lab errors, that would tend to obfuscate some information in the

case where analysis quality is poor in less experienced labs. It also can be expected that many

labs have only collected more recent data or narrower group of cannabis cultivars as their ori-

gins are recent and the customer base may be small. This would tend to bias results towards

the most popular cultivars from the last year or two. It was desired to examine a larger data set

encompassing a longer time interval to include more cultivars and less local and temporal

market preferences. Second, because some cannabinoids were systematically absent, we could

not accurately infer their behavior. Third, the accuracy of the measurement method at low

cannabinoid levels is poor, which may further complicate data collection particularly for those

cannabinoids produced at lower quantities. Finally, future work could examine a broader pro-

file of chemical profile contents including the missing cannabinoids and terpene data to allow

for calculation of these inferences using ensemble effects which have become a popular analy-

sis method [30]. Additionally, terpenoid compounds may be more information rich better in

clustering the range of diverse Cannabis varieties [29, 30], but perhaps a better approach

would be a combined analysis of both cannabinoids and terpenoids [12, 27] from multiple test-

ing facilities.
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