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Abstract—Gold farming is a set of illicit practices in which players 

in massively multiplayer online games gather and distribute virtual 

goods for real money. Using anonymized data from a popular 

online game to construct networks of characters involved in gold 

farming, we examine the trade networks of gold farmers, their 

trading affiliates, and uninvolved characters at large. Our analysis 

of these complex networks’ connectivity, assortativity, and attack 

tolerance indicate that farmers exhibit distinctive behavioral 

signatures which are masked by brokering affiliates. Our findings 

are compared against a real world drug trafficking network and 

suggest similarities in both organizations’ network structures 

which reflect similar effects of secrecy, resilience, and efficiency. 
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cybercrime, deviance, scale-free, assortativity, attack tolerance 

I.  INTRODUCTION 

Networks have assumed increasing importance as both a 
theoretical and a methodological approach toward 
understanding organizational structure and behavior [1, 2]. In 
particular, network analysis methods are potentially powerful 
tools to understand how actors in “dark” networks, such as drug 
traffickers and terrorist cells, coordinate their activities and 
adapt their structure to achieve their mission while avoiding 
detection and maintaining resilience [3, 4]. In practice, 
collecting and analyzing complete or even representative data 
on dark networks is complicated by the fact that these 
relationships, by definition, are purposively hidden. 

However, the explosion of behavioral data available in 
online databases has opened up new avenues of social research 
[5]. Massively multiplayer online games (MMOGs) are one 

potential source. These large-scale social environments contain 
players of varying levels of expertise who join cooperative 
teams to accomplish complex tasks [6, 7]. To the extent that 
individuals in online virtual worlds engage in similar 
psychological, social, and economic behavior as they do in the 
“real” world, player activity in virtual worlds can potentially be 
generalized to understand real world social dynamics [8]. 
Moreover, because the organizations that operate MMOGs 
maintain archival databases of all player actions and attributes, 
it is possible to analyze comprehensive cross-sectional and 
longitudinal behavioral data on a scale that would be unethical, 
impracticable, or impossible to do in the real world.  

Using a combination of comprehensive, unobtrusively 
obtained behavioral data and methods in network analysis, we 
examine the coordination structures and dynamics of a dark 
network of one particular type of deviant activity in an MMOG. 
These “gold farming” networks operate under similar 
constraints as other criminal organizations, and we argue that 
the structure and dynamics of these organizations can be used to 
characterize and understand deviant and criminal activity in 
other domains. The computational social science approach we 
employ offers an interdisciplinary approach to augment methods 
and theories in organizational behavior and criminology. 

II. GOLD FARMING 

A. Background 

Massively-multiplayer online games such as World of 
Warcraft, EverQuest II, and Lord of the Rings Online are 
examples of fantasy-based game worlds in which millions of 
players interact in a persistent virtual environment. While 
playing alone or with other players, individuals accumulate 
experience, armor, spells, and weapons to improve their power 
during encounters with non-player characters (NPCs) and 
player-versus-player combat (PvP). The virtual goods and in-
game currency players acquire make their characters more 
powerful, and so the acquisition of these items is typically one 
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of the major goals of play. However, the scarcity of these virtual 
items and the substantial investment of time needed to 
accumulate them drives demand. Many of goods can be 
obtained from other players within the game through trade for 
other items or currency. Just as these game economies exhibit 
macroeconomic characteristics observed in real-world 
economies [9], virtual worlds also contain black markets for 
acquiring goods and skills [10].  

“Gold farming” and “real money trading” refer to practices 
that involve the sale of virtual in-game resources for real-world 
money via exchanges outside of the game itself. The name 
stems from a variety of repetitive routines (“farming”) which 
are employed to accumulate virtual wealth (“gold”) which is 
sold to other players who lack the time or desire to accumulate 
their own in-game capital [11, 12]. Gold buyers purchase this 
virtual capital to obtain more powerful weapons, armor, and 
abilities for their characters. This, in turn, accelerates players to 
higher levels and allows them to explore larger parts of the 
game world, confront more interesting and challenging enemies, 
and increase their social standing [13]. 

 Gold farming has been constructed as a deviant activity by 
both the game developers as well as the player communities for 
a variety of reasons. First, in-game economies are designed with 
carefully-calibrated activities and products that serve as sinks to 
remove money from circulation. Because gold farmers and 
buyers inject currency into the economy, they create inflationary 
pressure, unintended arbitrage opportunities, and other perverse 
incentives for market agents. Second, farmers’ activities often 
overtly affect other players’ experiences by excluding them 
from shared game environments, employing anti-social 
computer scripts (“bots”) to automate the farming process, and 
engaging in the outright theft of account and financial 
information from their customers [11, 14]. Third, the game 
developers are risk-averse to the legal implications (such as 
property rights, taxation, and torts) of sanctioning a 
multinational industry estimated to generate between $100 
million and $1 billion in revenue annually [15, 16] while 
lacking legal jurisdiction, precedent, or regulation [17, 18]. 
Finally, farming upsets the meritocratic and fantasy-based 
nature of the game; some players may cease to play if other 
players can buy rather than earn accomplishments [19]. For 
these reasons, game developers actively and publicly ban 
accounts engaged in gold farming [20].  

Although previous studies of gold farming, real money trade, 

and other forms of virtual property have examined player 

perceptions and proxy economic indicators [16, 21], like other 

illicit or illegal practices, organizational secrecy prevents the 

collection of reliable data. Moreover, rapid changes in practices 

and market demand, popular perceptions of gold farming as a 

frivolous novelty, significant language barriers, and geographic 

distance also prevent thorough observation or systematic 

examination [11].  

B. Gold farming trade as a dark network 

Like other types of criminal organizations and dark 
networks, the pressure exerted by game developers to identify 
and disrupt gold farmers requires these clandestine operations to 
balance efficiency with security [22] and organizational 

resilience with operational flexibility [3]. While simple, routine, 
and unambiguous tasks are performed most efficiently in 
centralized network structures, difficult, complex, and 
ambiguous tasks are performed more efficiently in decentralized 
structures [23-25]. Thus, participants in dark networks 
attempting to maximize secrecy and efficiency must negotiate a 
dilemma in which decentralized networks provide the greatest 
security and resilience but low efficiency and flexibility [22].  

Criminal networks’ objectives and regularity of action 
likewise influence the structure they assume. Erickson’s study 
of six diverse clandestine organizations concludes organizations 
with an established reputation are committed to emphasizing 
security over efficiency [23]. Baker and Faulkner’s study of 
price fixing and collusion in a white collar crime ring revealed 
that peripheral players were less targeted and less sanctioned 
than more central players [24]. Decentralization has also been 
observed to be a key tactic adopted by members of a criminal 
network in response to targeting and asset seizure by law-
enforcement [25]. Compared to the network of al-Qaida 
terrorists, a drug trafficking enterprise engaging in regular 
activity exhibits higher centralization and a core of closely-
linked participants with stable roles [22]. The addition of other 
actors to the core of a criminal network can serve to extend its 
periphery and insulate participants at the core [26].  

If dark networks are organized to maximize concealment 
and secrecy, networks of gold farmers and their affiliates should 
have (1) lower centrality relative to non-farmers, (2) 
decentralized topologies, and (3) dissortative mixing to reduce 
the likelihood of identification and expulsion. Furthermore, the 
farming network should also exhibit substantial resilience to the 
removal of gold farmers from the network as a result of random 
failures as well as concerted attacks. These concepts are 
described and operationalized in greater detail below. 

III. DATA AND METHODS 

A. Data and preparation 

Anonymized database dumps were collected from Sony 
Online Entertainment’s massively-multiplayer online game 
EverQuest II. These data include both cross-sectional attribute 
data about individual characters as well as longitudinal data 
cataloging character-to-character transactions. Because activity 
within the game is spread amongst several unique servers 
running instances of the game in parallel, a record of player-to-
player exchanges on a single, representative server was 
condensed to generate a weighted, directed edge list of all 
transactions between characters on that server between for 36 
weeks between January and September 2006. A separate table 
recording instances of accounts banned by the developer for 
abuse, non-payment, and other reasons was parsed to extract 
rationales related to “plat”, “spam”, “farm”, “gold”, “coin”, 
“bot”, and “launder”. The list of banned gold farmers was 
intersected with the trade activity database based on common 
account identification numbers to identify counterparty 
characters in which at least either the transaction sender or 
receiver had been banned by game administrators using gold 
farming-related rationales. 

Just as a list of judgments from criminal proceedings is not 
an exhaustive account of all criminal activity, the cancellation 



table is not a complete list of all gold farmers. Previous research 
using a machine learning approach to classify gold farmers 
based upon demographic and behavioral variables generated a 
large number of false positives, which may be evidence of 
unidentified gold farmers in the data [27]. Given the presence of 
identified gold farmers, unidentified gold farmers, and non-gold 
farmers, we identify three distinct types of networks. The 
farming network is the set of all characters whose accounts have 
been identified as gold farmers by the administrators at any 
point in time and the trade relationships among them. The 
affiliate network is the set of farmers, all characters that have 
ever transacted with a farming character, and the relationships 
among both. Finally, the non-affiliate network is the set of 
characters that have never interacted with identified gold 
farmers. All three networks are directed, which means that a tie 
from actor A to actor B is distinct from a tie from actor B to 
actor A. 

We also use network data on a drug trafficking ring obtained 
from a Canadian law enforcement taskforce called Project 
Caviar to contextualize our findings for the gold farming 
network [25, 28]. Although orders of magnitude smaller in 
network size (N=110, E=295), the Caviar data is also directed 
longitudinal data of criminals and co-offenders which makes it a 
direct real-world analogue against which we can compare 
network statistics and dynamics. 

B. Network statistics: centrality, weight, clustering 

Network analysis offers several statistical metrics for 

calculating the most “important” or “prominent” node in a 

network. Specific definitions for each can be found in [29]. 

 In-degree and out-degree centrality reflect the number of 

incoming and out-going directed ties for a given node. 

Nodes with high in-degree centrality have many incoming 

links.  

 Closeness centrality measures how close a given node is to 

the rest of the network, or the inverse of the sum of shortest 

paths to every other actor in the network. Nodes with high 

closeness centrality can reach every other node in the 

network in relatively few steps.  

 Betweenness centrality measures the extent to which an 

actor lies on many shortest paths between every other node, 

connecting nodes that would not otherwise be connected 

through short or direct paths.  

 Eigenvector centrality is a measure of prestige recursively 

calculated by taking a given node’s influence as a function 

of the influence of the nodes connected to it. Nodes with 

high eigenvector centrality are themselves connected to 

other nodes with high eigenvector centrality. 

 Clustering coefficient is estimated by measuring the extent 

to which a given node’s counterparties have each other also 

as counterparties. A node with a high clustering coefficient 

in a trading network implies that many of its partners also 

trade with each other.  

C. Network dynamics: connectivity, assortativity, tolerance 

Many social, collaboration, and technological networks 
exhibit highly centralized network topologies, principally 
characterized by a frequency distribution of individual nodes’ 

degrees following a power law,           . Complex networks 
exhibiting this scale-free property are not generated randomly 
but emerge as a result of growth and preferential attachment of 
new nodes to existing nodes of high degree [30, 31]. In some 
centralized networks, the distribution is not a true power law. 
Truncated power laws have attenuated distriubtions in the tail 
which suggests that extrinsic factors are limiting the ability of 
high degree nodes to create more links. These effects may be 
related to aging (some old nodes stop receiving new links after 
some time threshold) or cost effects (maintenance of links has 
non-trivial marginal costs) [32]. We expect that gold farming 
networks will exhibit truncated degree distriubtions as farmers 
preferentially link to trusted co-offenders and restrict the 
number of connections formed to evade detection. 

Scale-free and other complex networks can also be 
characterized by the extent to which the degree of individual 
nodes is correlated with the degrees of its neighbors. Networks 
exhibiting assortative mixing are defined by high-degree actors 
being connected to other high-degree actors while low-degree 
actors are connected to other low-degree actors. Conversely, 
networks exhibiting dissortative mixing have high-degree actors 
connected to low-degree actors and low-degree actors connected 
to high degree actors. Newman defines a connected degree-
degree Pearson correlation coefficient: 

  
 

  
 
             

  

 

where   
  is the variance of the normalized distribution qk of 

neighbors’ degrees for a given degree k. Social and 
collaborative networks tend to exhibit strong assortativity while 
technological and biological networks generally exhibit 
dissortativity [33, 34]. We expect that clandestine networks will 
exhibit dissortativity as highly-central actors will be more-
strongly motivated to distance themselves from other highly-
central actors so to maintain secrecy and resilience rather than 
joining groups and teams with other highly-central actors [35].  

Finally, we examine the error and attack tolerance of the 
farmer and affiliate networks. Previous research has examined 
the extent to which scale-free and other complex networks 
remain robust even at unrealistically high failure rates [36, 37]. 
We similarly define error tolerance to be the extent to which 
the trade network remains connected despite random removal of 
nodes. Given the high variability of centralization in the 
network and prevalence of actors with low degree, it is 
improbable that any a random failure will fragment the network 
into disconnected subcomponents or isolated nodes. Thus, the 
random attack serves as a baseline against which we can assess 
the relative performance of the other attack strategies.  

Scale-free networks with heterogeneous distributions of 
connectivity or edge weight imply that connectivity across the 
network is maintained by a few highly connected nodes whose 
removal can drastically alter the network’s topology [36]. 
Because game companies actively attempt to identify and ban 
gold farming accounts from the game, we simulate two possible 
strategies for fragmenting the farming and affiliate networks to 
assess how quickly this network can be broken. Attacks 
employing node degree targeting sequentially remove nodes 
with the highest connectivity (degree) in the network. Attacks 



employing edge weight targeting sequentially remove the dyads 
sharing the highest weighted edges on the network. The 
resilience of the network to attacks removing nodes can be 
assessed by the extent to which the network remains intact and 
transversable. Fragmented networks should exhibit two 
characteristics: (1) having many unconnected nodes (isolates) 
and (2) the largest subcomponent of the network having 
relatively small fraction of the total nodes in the networks. We 
expect that gold farming network will exhibit substantial 
tolerance to random error as well as targeted attacks. 

IV. RESULTS 

A. Differences in centrality, weight, clustering 

The union of all three networks consists of 228,365 directed 
edges between 43,021 characters. The farming network has 
1,604 nodes, 2,930 edges, and the maximum observed 
transactions between characters was 1,459. The affiliate 
network had 5,367 nodes, 29,178 edges, and the maximum flux 
remained 1,459. Although journalistic accounts of gold farming 
operations indicate that they operate in a competitive 
marketplace [38, 39], the observed farming network was a 
strongly-connected component rather than isolated 
subcomponents. If there are multiple farming organizations 
operating in the game, it appears their characters are certainly 
interacting and are potentially colluding. 

 Multinomial logit regression models for the three node 
types (farmer, affiliate, and non-affiliate) were used to measure 
the differences between farmers’ and affiliates’ centrality scores 
against non-affiliates’ centrality. Farmers had significantly 
lower in-degrees (β=-0.0473, z=-9.24) and out-degrees (β=-
0.189, z=-5.11) while affiliates had significantly higher in-
degrees (β=0.0626, z=47.21) and out-degrees (β=0.0529, 
z=44.25) as compared with non-affiliates respective degrees. 
Farmers and affiliates both also received (βfarmer=0.00691, 
z=23.04; βaffiliate=0.00851, z=32.64) and initiated 
(βfarmer=0.00796, z=24.32; βaffiliate=0.009556, z=32.97) more 
transactions than lay-characters. These significant differences 

corroborate our hypotheses and suggest farmers – rather than 
camouflaging their activity or counterparties by emulating 
typical players’ trading practices – rely upon many repeated 
transactions with only trusted (and likely co-offending) 
characters. This behavior is contrasted by gold farmers’ 
affiliates who have substantially higher connectivity and 
transaction frequency than lay players. 

Farmers (β=-0.679, z=-6.38) and affiliates (β=-2.438, z=-
13.24) had significantly lower closeness centrality scores than 
the unaffiliated population at large. This suggests farmers and 
their affiliates generally position themselves on the periphery of 
the transaction network such that most actors would have to 
pass through several intermediary characters to trade with them. 
Farmers (β=1.56x10

-7
, z=1.94) have only marginally greater 

betweenness centralities than the population at large, although 
affiliates’ betweenness (β=1.36x10

-6
, z=35.81) is significantly 

greater. Farmers also had significantly lower eigenvector 
centrality (β=-10300, z=-8.60) while affiliates had significantly 
higher (β=5377, z=35.73) eigenvector centrality as compared 
with non-affiliated characters. Affiliates are more likely to 
connect characters that cannot otherwise connect to each other 
while also being connected to by influential characters. This 
indicates they serve a key brokering role effectively insulating 
characters with a higher likelihood of being banned from the 
game from characters in the rest of the network.  

Finally, farming networks exhibit significantly higher 
clustering coefficients (β=0.905, z=8.64) than the non-affiliate 
population although affiliates do not have significantly different 
clustering coefficients (β=-0.0926, z=-0.81). Since farmers’ 
trade networks are substantially more tightly-knit, the fact that 
farmers’ counterparties are more likely to trade with each other 
provides a greater level of redundancy if any single actor is 
removed. Affiliates’ trading partners are no more tightly-knit 
than the general population of characters. This implies that 
affiliates serve a unique role brokering connections between the 
farmers and typical characters and exhibit structural 
characteristics of both farmers and non-affiliates. 

 

 

Figure 1: In- and Out-degree distributions of trading networks Figure 2:  Tie strength distribution of networks 
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B.  Degree and weight distribution 

Figure 1 plots the in-degree and out-degree distributions of 
the farmer, affiliate, and non-affiliate networks. The quasi-linear 
relationship on log-log scale denotes a scale-free structure of 
these networks. This heterogeneous connectivity implies a 
highly centralized network in which the majority of characters 
have few trading links with each other, but a handful of 
characters have hundreds of counterparties. Although networks 
with scale-free degree distributions are generated by an 
underlying fitness function that causes new actors to 
preferentially link with existing actors, the degree and weight 
distributions observed in Figure 1 do not exhibit ideal scale-free 
behavior. In the degree distribution, we observe an attenuation 
of connectivity among higher-degree nodes in all three network 
types rather than a straight linear decrease throughout the 
domain. The onset of this truncated connectivity for non-
affiliated and affiliated nodes (k ≈ 20) occurs well above the 
average degree in the network (k = 5.4) while the fall-off occurs 
more rapidly for the farmer network (k ≈ 5). Models of node 
aging and limited interaction capacity both approximate this 
truncation of scale-free connectivity: farmers may avoid over-
exposure by limiting the number of trade relationships they have 
or preferentially linking to only those actors possessing specific 
attributes [32, 40].  

Figure 2 plots the distribution of tie strengths for each of the 
three networks. Again, a power law distribution of tie strengths 
suggests that the vast majority of dyads in each network only 
transact once or twice, but there are several dozen dyads trading 
with each other more than 100 times over nine months. The 
intensification of tie strength is also observed in the farming 
network around a tipping point (S ≈ 25). The shift above this 
threshold suggests there are more gold farmer dyads engaging in 
more intense trading than would be expected by extrapolation. 
This effect may be an adaptation that promotes operational 
efficiency, security, or resilience, thus high-frequency trading 

may potentially be a reliable behavioral signature for identifying 
gold farming transactions; these dyads will be the first removed 
in attack tolerance simulations below. 

C. Assortativity 

Figure 3 plots the average degree (knn) for the nearest 
neighbors of nodes with a given degree k. The non-affiliate 
network is clearly assortative based on the positive relationship 
(r=0.201) between node degree and neighbor’s degree. Frequent 
traders are more likely to interact with other frequent traders, 
supporting our assumption that trade interactions are 
fundamentally social and collaborative. As hypothesized, we 
observe the subset of the affiliate network consisting of only 
identified farmers exhibits a clear pattern of dissortative mixing 
(r=-0.261) that resembles the dissortative pattern observed in 
the offline Caviar drug trafficking network (r=-0.466). The 
presence of dissortative mixing in both the drug trafficking and 
gold farming networks is evidence that behaviors in online, 
virtual worlds also map onto offline, real world behavior.  

The affiliate network exhibits characteristics of both the 
associative non-affiliate network and the dissortative clandestine 
networks (r=0.015). In Figure 3, for 1<k<30, the network is 
clearly assortative, nearly matching the non-affiliate network. 
However, for k>30 the network exhibits substantially more 
variance including a cluster of high-degree outliers with 
significantly lower neighbor degree centralities. These findings 
suggest that the affiliate network exhibits characteristics of both 
the legitimate, non-affiliate trade network in the k<30 domain 
as well as the farmer trade network in the k>30 domain. These 
high degree nodes with low degree neighbors in the affiliate 
network likely include unidentified gold farming characters. 
These heterogeneous mixing distributions for the affiliate and 
farmer networks further motivate our analysis below to 
understand whether the removal of high-degree brokering 
characters can effectively fragment the network. 

  

Figure 3: Average neighbor out-degree (knn) for affiliate, non-
affiliate, farmer, and Caviar networks against actor degree (k) 

Figure 4: Fraction of isolate actors, in red, and fraction of 
network actors in largest connected component (LCC), in blue, 

after node removal by random, degree, or edge attacks 
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D.  Attack tolerance 

Attacks on the gold farming and affiliate networks were 
simulated using random failure, degree attack, and edge attack 
targeting strategies. Figure 4 displays the results of these attacks 
on both the fraction of the affiliate network located inside the 
largest connected component (LCC) as well as the fraction of 
the affiliate network that are isolates. Notably, the edge attack 
strategy of extracting nodes with strong link weights performs 
more poorly than both degree attack and random node failure. 
When all nodes with edge strength greater than 16 transactions 
have been removed, the resulting network has 50% fewer links 
and 24% fewer actors. However, there are still no isolates in this 
network and the largest connected component contained over 
88% of network actors. The resilience of the network under an 
attack removing nodes based on their rank-ordered maximum 
tie strength – even at similar fractions of removed nodes that 
lead to fracturing under random and degree attacks – suggests 
the prevalence and distribution of weak ties in this affiliate 
network gives it substantial resilience. 

The affiliate network is likewise resilient to degree attack as 
it only begins to appreciably fracture after removing 10-15% of 
the most well-connected characters. More than 30% of the most 
well-connected nodes must be removed to ensure that 50% or 
more of the network are isolates or not in the LCC. Because the 
affiliate network exhibits hybrid properties that make it difficult 
to accurately and precisely distinguish gold farmers from 
legitimate characters, if even a fraction of the highest-degree 
affiliates are legitimate characters who cannot be justifiably 
removed, then these genuine actors’ residual connectivity is 
problematic: administrators would need to identify and remove 
very large fractions of the affiliate network containing 
unidentified farmers to effectively fragment it. 

Figures 5 and 6 compare the identified farmer network to the 
Caviar drug-trafficking network. Both the real world and virtual 
criminal networks exhibit very similar performance and 

resilience under degree attack and random failures. Removing 
less than 1% of the nodes by attack keeps the fraction of the 
network in the LCC relatively high and the number of isolates in 
the network relatively low. However, these networks are an 
order of magnitude more sensitive to node removal than the 
affiliate networks analyzed in Figure 4; removing approximately 
5% of nodes by degree attack cuts the fraction of nodes in the 
largest connected component below 50% while increasing the 
fraction of isolates to approximately 50%.  

Taken together, this analysis shows the farmer and affiliate 
networks have substantial resilience to both random failures and 
determined attacks over several orders of magnitude before 
fracturing into many disconnected components, a pattern which 
is also found in a real-world drug trafficking network. The 
affiliate network exhibits even less sensitivity to attack than the 
clandestine networks alone. These findings suggest that farmers 
are able to effectively conceal their interaction patterns against 
the background of legitimate trade activity which also provides 
substantial resilience to interdiction. 

V. DISCUSSION 

A. Conclusions 

Gold farmers ply their trade on the periphery of a complex 
and heterogeneous trade network. Rather than interacting 
directly with the general population, farmers broker their 
transactions through a complex network of undetected affiliate 
characters. The significant differences in connectivity and 
assortativity between farmers, affiliates, and typical players 
suggests that characters engaged in activities with a higher 
likelihood of being banned adapt their behavior and interactions 
to support the twin imperatives of efficiency and secrecy. 
Although farmers form fewer connections than lay characters, 
they trade very intensely within their highly-clustered 
immediate networks. The heterogenous connectivity of this 
network combined with its dissortative mixing appear to exhibit 
a similar level of resilience to simulated attacks as observed in a 

  

Figure 5: Fraction of actors in largest connected component 
(LCC) of Farmer and Caviar networks 

Figure 6: Fraction of isolated actors in network of Farmer and 
Caviar networks 
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real world drug trafficking networks. Gold farmers’ trading 
counterparties likewise exhibit a centralized network with 
skewed connectivity and transaction frequency, but they also 
trade with many more characters than expected in the general 
character population. These affiliated characters appear to fulfill 
a crucial role in brokering trades between farmers and non-
farmers and exhibit connective and assortative characteristics of 
both groups. This affiliate network requires a significant 
fraction of nodes to be removed before it fractures and the likely 
presence of unidentified farmers embedded amongst legitimate 
players further heightens the difficulty for administrators. 

From a theoretical perspective, the dynamic processes that 
generate both networks’ characteristic structural patterns (e.g., 
heightened clustering, truncated degree distriubtions, 
dissortative mixing) imply that clandestine and deviant 
organizations in online settings are motivated and constrained 
by the similar organizational pressures observed in offline 
criminal organizations. Whereas prior attempts to employ social 
network analysis to understand criminal, deviant, or other 
clandestine networks have had difficulty overcoming the 
substantial barriers towards collecting reliable data on these 
organizations [41, 42], by observing patterns of relational data 
in a MMOG, we were able to characterize complex properties 
of several thousand individuals in a clandestine networks.  

However, these conclusions carry some caveats. While we 
assume the organizational behavior of gold farmers reflect 
similar imperatives and behavior as real-world criminal 
organizations, gold farming networks also potentially differ 
from real world criminal networks because of the intrinsic 
affordances of electronic medium in which they operate. While 
traditional criminal organizations rely on trust to recruit co-
offenders and engage in their tasks [43], gold farmers can 
effectively create new or replacement co-conspirators at low 
costs by registering new accounts. Thus, gold farmers, unlike 
other criminals, do not need to recruit or convert existing 
players, engage in processes of ideological identification or 
control over existing members, or threaten violence against 
defectors to accomplish their mission [3, 42]. The consequences 
of being identified and banned are largely pecuniary rather than 
the long-term or even mortal risks in the real world. 

The present analysis likewise offers only a cross-sectional 
and macro-level analysis of the dynamics and structures 
involved in clandestine organization. Our sampling of the data 
and subsequent analysis is also necessarily biased by the 
heuristics employed by the game developer to identify deviant 
players and almost certainly omits the interactions of some 
actors engaged in unidentified deviant acts. Our analysis 
likewise does not control for endogenous variables such as 
changes in features of the game play or player population which 
may give rise to significant changes in patterns and structures of 
interaction among players.  

B. Implications and future work 

Our research demonstrates that actors engaged in deviant 
behavior in an online game operate under similar constraints 
and motivations in response to authorities’ enforcement 
activities as offline criminal organizations. This is evidence that 
there is indeed some “mapping” between virtual and real 
criminal networks. However, given the potential of mining 

structural and behavioral data from large corpuses, 
characterization and analysis of criminal networks must go 
beyond cross-sectional and macro-level descriptive statistics of 
structure and address the underlying dynamics of local-level 
structural change in response to enforcement actions. Other 
types of relational data present within the game such as 
communication patterns, group interactions, behavioral patterns, 
and trust proxies can be incorporated into more thorough 
analyses of multiplex relations among members of deviant 
organizations. Future research should develop machine learning 
models of structural and behavioral signatures likely to predict 
gold farming behavior. Furthermore, systematic disparities 
between rule sets predicting farmers from these models could 
then be used to identify biases in authorities’ heuristics for 
identifying farmers as well as emergent properties of actors 
employing traits to exploit these gaps. 

Future scholars should also examine how coevolutionary 
processes of variation, selection, and retention of behavioral 
signatures within these networks need to be reconciled with 
existing theories of criminal organizational behavior [44, 45]. 
Given the variation in missions, members, and media across 
different criminal organizations, we suggest drug trafficking 
operations, terrorist cells, and white collar conspiracies may 
exhibit similar structural signatures and behavioral features in 
response to authorities’ enforcement and interdictions. 
P*\exponential random graph models (ERGM) are powerful 
tools for comparing disparate networks [46] and can potentially 
support the development of multi-level, multi-theoretical 
models of criminal networks [47]. 
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